A new type of difference operator Δ 3 on triple sequence spaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Results on the Sequence Spaces Equations Using the Operator of the First Difference

Given any sequence z = (zn)n≥1 of positive real numbers and any set E of complex sequences, we write Ez for the set of all sequences y = (yn)n≥1 such that y/z = (yn/zn)n≥1 ∈ E; in particular, cz denotes the set of all sequences y such that y/z converges. By w∞, we denote the set of all sequences y such that supn≥1(n −1 ∑n k=1 |yk|) < ∞. By ∆ we denote the operator of the first difference define...

متن کامل

The generalized triple difference of χ sequence spaces

In this paper we define some new sequence spaces and give some topological properties of the sequence spaces χ (∆v , s, p) and Λ 3 (∆v , s, p) and investigate some inclusion relations.

متن کامل

On difference sequence spaces defined by Orlicz functions without convexity

In this paper, we first define spaces of single difference sequences defined by a sequence of Orlicz functions without convexity and investigate their properties. Then we extend this idea to spaces of double sequences and present a new matrix theoretic approach construction of such double sequence spaces.  

متن کامل

On Some New Difference Sequence Spaces of Fractional Order

Let ∆(α) denote the fractional difference operator. In this paper, we define new difference sequence spaces c0(Γ, ∆(α), u) and c(Γ, ∆(α), u). Also, the β−dual of the spaces c0(Γ, ∆(α), u) and c(Γ, ∆(α), u) are determined and calculated their Schauder basis. Furthermore, we characterize the classes (μ(Γ, ∆(α), u) : λ) for μ ∈ {c0, c} and λ ∈ {c0, c, l ∞, l1} .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proyecciones (Antofagasta)

سال: 2018

ISSN: 0716-0917

DOI: 10.4067/s0716-09172018000400683